Seasonal pans are hydrologically dynamic, with significant changes in water volume and depth in response to high evaporation, infiltration rates and inundation events. Intra-seasonal and inter-seasonal changes in endorheic and floodplain pans in relation to limnology, size, hydroperiod, and river connectivity were studied over two rainfall seasons across 36 pans at the Save Valley Conservancy. In the study region, floodplain pans were identified as pans that had connectivity with the Save River, while the endorheic pans (large and small) were hydrologically isolated basins. Seasonal trends for physico-chemical variables were initial low and gradual increased for both rainfall seasons. Significant inter-seasonal differences for several physico-chemical variables were observed. No significant differences in physico-chemical variables were observed between large and small endorheic pans, with the except for vegetation cover, which was higher in large pans. Floodplain pans differed from the endorheic systems in pH, conductivity, nutrients and suspended solids. Connectivity was found to be insignificant, as connections between these systems were probably too infrequent. Seasonal pans were uniquely distinguished by their morphometric, physico-chemical and hydrological characteristics. Inevitably, they are vulnerable to climate change with the extent of their resilience currently unknown.
Read full abstract