The soil water supply and atmospheric humidity conditions are crucial in controlling plants’ stomatal behavior and water use efficiency. When there is water stress caused by an increase in saturated water vapor pressure (VPD) and a decrease in soil water content (SWC), plants tend to close stomata to reduce water loss. This affects the gross primary productivity (GPP) and evapotranspiration (ET), subsequently leading to changes in water use efficiency (WUE) and carbon use efficiency (CUE) in plants. However, land–atmosphere interactions mean that water vapor in the atmosphere and soil moisture content causing water stress for plants are closely related. This study aims to compare and estimate the effects of VPD and SWC on the carbon cycle and water cycle for different plant functional types. Based on the fluxnet2015 dataset from around the world, the WUE and CUE of five plant functional types (PFTs) were estimated under varying levels of VPD and SWC. The results showed that high VPD and low SWC limit the stomatal conductance (Gs) and gross primary productivity (GPP) of plants. However, certain types of vegetation (crops, broad-leaved forests) could partially offset the negative effects of high VPD with higher SWC. Notably, higher SWC could even alleviate limitations and partially promote the increase in GPP and net primary production (NPP) with increasing VPD. WUE and CUE were directly affected by Gs and productivity. In general, the increase in VPD in the five PFTs was the dominant factor in changing WUE and CUE. The impact of SWC limitations on CUE was minimal, with an overall impact of only −0.05μmol/μmol on the four PFTs. However, the CUE of savanna plants changed differently from the other four PFTs. The rise in VPD dominated the changes in CUE, and there was an upward trend as SWC declined, indicating that the increase in VPD and decrease in SWC promote the increase in the CUE of savanna plants to some extent.
Read full abstract