Abstract

The choice of temperature and gas conditions used in a water pressure-controlled reactor is guided by density functional theory (DFT) to synthesize nearly phase-pure lanthanide scandate nanoparticles (LnScO3, Ln = La, Nd, Sm, Gd). In this synthetic method, low water-vapor partial pressures, well below water's gas liquidus, inhibit particle growth, while an excess of water vapor results in undesired rare-earth hydroxide and oxyhydroxide secondary phases. The optimal humidity for high-purity LnScO3 particle synthesis is shown to vary with the lanthanide; DFT is used to calculate the thermodynamics of secondary phase formation for each lanthanide tested such that the role of water vapor may be quantified and used to maintain phase purity (greater than 96 mol %) across the series. The combination of thermodynamic calculation and experimental confirmation with this pressure-controlled reactor provides an opportunity to explore analogous syntheses of other inorganic perovskite nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.