Ethnopharmacological relevanceAs a traditional Chinese medicine, Artemisia argyi has been used medicinally and eaten for more than 2000 years in China. It is widely reported in treating inflammatory diseases such as eczema, dermatitis, arthritis, allergic asthma and colitis. Although several studies claim that its volatile oil and organic reagent extracts have certain anti-inflammatory effects, the water-soluble fractions and molecular mechanisms have not been studied. Aim of the studyTo evaluate the therapeutic effect of A. argyi water extract (AAWE) on lipopolysaccharide (LPS)-induced inflammatory responses and to identify the most effective water-soluble subfractions. Moreover, the relevant pharmacological and molecular mechanisms by which the active subfraction mitigates inflammation were further investigated. Materials and methodsFirstly, RAW 264.7 cells stimulated with LPS were treated with AAWE (50, 100, and 200 μg/mL) or the water-soluble subfractions separated by D101 macroporous resin (AAWE1-AAWE4, 100 μg/mL), and NO production and mRNA levels of inflammatory genes were evaluated to determine the most effective water-soluble subfractions. Secondly, the chemical components of the active subfraction (AAWE4) were analyzed by UPLC-QTOF-MS. Thirdly, transcriptome and network pharmacology analysis, RT-qPCR and Western blotting assays were conducted to explore the underlying anti-inflammatory mechanism and active compounds of AAWE4. Subsequently, the binding ability of the potential active components in AAWE4 to the core targets was further determined by molecular docking. Eventually, the in vivo anti-inflammatory activity of AAWE4 (1.17, 2.34 and 4.68 g/kg, administered per day for 7 d) was evaluated in mice with LPS-induced systemic inflammation. ResultsIn this study, AAWE showed excellent anti-inflammatory effects, and its water-soluble subfraction AAWE4 exhibited the strongest inhibitory effect on NO concentration and inflammatory gene mRNA expression after LPS stimulation, indicating that it was the most effective subfraction. Thereafter, four main compounds in AAWE4 were confirmed or tentatively identified by UPLC-QTOF-MS, including three flavonoid glycosides and one phenolic acid. Furthermore, the transcriptome and network pharmacology analysis showed that AAWE4 inhibited inflammation via multiple pathways and multiple targets. Based on the RT-qPCR and Western blotting results, AAWE4 downregulated not only the p38, PI3K, CCL5, MMP9, AP-1, and BCL3 mRNA expression levels activated by LPS but also their upstream and downstream protein expression levels and protein phosphorylation (p-AKT/AKT, p-p38/p38, p-ERK/ERK, p-JNK/JNK). Moreover, four identified compounds (isochlorogenic acid A, vicenin-2, schaftoside and isoschaftoside) could significantly inhibit NO content and the overexpression of inflammatory factors TNF-α, IL-1β, iNOS and COX-2 mRNA induced by LPS, and the molecular docking confirmed the high binding activity of four active compounds with selected core targets (p38, AKT1, MMP9, and CCL5). In addition, the mRNA expression and immunohistochemical analysis showed that AAWE44 could inhibit lung inflammation via multiple pathways and multiple targets in vivo. ConclusionsThe findings of this study suggest that the water-soluble subfraction AAWE4 from A. argyi ameliorated the inflammation caused by LPS through multiple pathways and multiple targets in vitro and in vivo, providing scientific support for the medicinal use of A. argyi. Importantly, it shows that the A. argyi subfraction AAWE4 can be developed as an anti-inflammatory drug.