As reported during the last five years, SnSe is one of the leading thermoelectric (TE) materials with a very low lattice thermal conductivity. However, its elements are not as heavy as those of classical thermoelectric materials like PbTe or Bi2Te3. Its outstanding TE properties were revealed after repeated purification steps to minimize the amount of oxygen contamination, followed by spark plasma sintering. Recently, we showed that hot-pressing—once optimized—can yield comparable or even better TE performance using the examples of Na- and Cu- as well as Na- and Ag-co-doped SnSe. However, long-term stability remains a challenge during cycling between low and high temperatures. Here, we investigated whether the cooling procedure has a significant impact on the thermoelectric properties of SnSe. We compared cooling of the melt with a 1:1 ratio of Sn:Se from 1273 K down to room temperature in air with quenching in water. As typical for undoped SnSe, both materials were extrinsic p-type semiconductors due to Sn defects. The air-quenched sample exhibited higher thermal conductivity, lower electrical conductivity, and higher Seebeck coefficient, all consistent with a smaller number of defects and thus a smaller number of charge carriers due to the slower cooling procedure. This resulted in a comparatively low peak figure-of-merit value zT of 0.61 at 823 K for the air-quenched sample, compared to the substantially higher peak zT of 1.58 at 813 K for the water-quenched sample.
Read full abstract