In recent decades, global warming has intensified hydrological cycles, raising concerns about the impacts of climate change on hydrological processes, water quality, and water resources across various temporal and spatial scales. These changes significantly affect water resource management and environmental protection policies and may also influence the ecological health and socio-economic well-being of lake regions. Qinghai Lake, the largest inland lake and a major water source reservoir in China, plays a crucial role in the ecological security of the Qinghai-Tibet Plateau. However, in recent years, with the ongoing development of the economy and society throughout the province, there has been an increase in algal blooms in the nearshore area of Qinghai Lake, with the affected area expanding annually. There is currently no clear consensus on the causes of eutrophication in lakes, and comprehensive, in-depth research on how different land use types-critical to the material migration and transformation processes of natural water bodies-affects water quality and ecological security, as well as the interactions between nutrients and heavy metals, is lacking. Therefore, it is essential to monitor and understand the effects of climate change on lakes and to develop adaptive strategies to mitigate and respond to these impacts amidst rapid economic and social development. The lake environmental pollution early warning system developed in this study provides a scientific research paradigm for lake water pollution control and offers valuable data support for policymakers in formulating ecological protection and development strategies.
Read full abstract