A review of different energy components is detailed, as a baseline of fundamentals for the new integrated energy concept idealization. This innovative solution is a Hybrid for Renewable Energy Network (Hy4REN) based on well-studied elements to produce the best final solution. This proposal has the objective of improving energy system sustainability, facing fossil fuel and climate change restrictions, and increasing energy network flexibility. The most mature energy storage technology, pumped hydropower energy storage (PHES), is used to support both the grid connection and stand-alone modes, as an integrated hybrid energy system. The hybrid system idealization is modular and scalable, with a complementary nature among several renewables, using sea water in offshore mode to build an integrated solution. By evaluating a variety of energy sources, complemented with economic analysis, the benefits associated are evidenced using this sustainable methodology based only on renewable sources. Combined production of hydropower, using sea water, with pumped storage and water hammer events to create potential energy to supply hydropower in a water loop cycle, without consuming electrical energy, is explored. Other renewable sources are also integrated, such as floating solar PV energy and an oscillating water column (OWC) with coupled air-venting Wells and wind turbines, all integrated into the Hy4REN device. This complementarity of available sources allows us to improve energy storage flexibility and addresses the energy transition toward net-zero carbon emissions, inducing significant improvements in the sustainability of the energy network as a whole.
Read full abstract