Abstract
The decarbonisation of building heating in urban areas can be achieved by heat pumps connected to district heating networks. These could be ‘third-generation’ (85/75 °C), ‘fourth-generation’ (50/40 or 50/25 °C) or ‘fifth-generation’ (near ambient) water loops. Networks using thermochemical reactions should require smaller pipe diameters than water systems and be more economic. This work investigates thermochemical transmission systems based on liquid–gas absorption intended for application in urban district heating networks where the main heat source might be a MW scale heat pump. Previous studies of absorption for heat transmission have concentrated on long distance (e.g., 50 km) transmission of heat or cold utilizing waste heat from power stations or similar but these are not directly applicable to our application which has not been investigated before. Absorbent-refrigerant pairs are modelled using water, methanol and acetone as absorbates. Thermodynamic properties are obtained from the literature and modelling carried out using thermodynamic analysis very similar to that employed for absorption heat pumps or chillers. The pairs with the best performance (efficiency and power density) both for ambient loop (fifth-generation) and high temperature (fourth-generation) networks use water pairs. The next best pairs use methanol as a refrigerant. Methanol has the advantage of being usable at ambient temperatures below 0 °C. Of the water-based pairs, water–NaOH is good for ambient temperature loops, reducing pipe size by 75%. Specifically, in an ambient loop, heat losses are typically less than 5% and the heat transferred per volume of pumped fluid can be 30 times that of a pumped water network with 10 K temperature change. For high temperature networks the heat losses can reach 30% and the power density is 4 times that of water. The limitation with water–NaOH is the low evaporating temperature when ambient air is the heat source. Other water pairs perform better but use lithium compounds which are prohibitively expensive. For high temperature networks, a few water- and methanol-based pairs may be used, but their performance is lower and may be unattractive.
Highlights
The decarbonisation of building heating in urban areas can be achieved by heat pumps connected to district heating networks
The results obtained in the simulations of the thermochemical network with different absorption pairs are presented
The results presented examine the applicability of sorption pairs to the ambient loop network concept
Summary
It is commonly suggested that the decarbonisation of building heating in urban areas is best achieved by large, efficient, and adaptable heat pumps connected to district heating networks. Within these sections different absorption pairs using a number of refrigerants (water, methanol and acetone) are compared and contrasted. At the delivery point the liquid water can be evaporated by ambient temperature heat and be absorbed into the concentrated solution, releasing the heat of absorption to the load. Even with very high levels of pipe insulation the three liquid lines would lose significant amounts of sensible heat as they are pumped over long distances
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.