Co-contamination with MPs and PFASs has been recorded, particularly in surface-water environments. Floating macrophyte microcosms are an important part of the surface water ecosystem, and dissolved organic matter (DOM) driven by floating macrophytes (FMDDOM) is critical for maintaining material circulation. However, knowledge gaps remain regarding the impact of MPs and PFASs co-pollution on FMDDOM. An greenhouse simulation experiment was conducted in this study to investigate the effects of four PFASs, perfluorooctanoic acid (PFOA), perfluoro-octane-sulfonic acid (PFOS), perfluoro-2-methyl-3-oxahexanoic acid (Gen X), and potassium 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate (F-53B), on FMDDOM sourced from Eichhornia crassipes (E. crassipes), a typical floating macrophyte, in the presence and absence of polystyrene (PS) MPs. Four PFASs increased FMDDOM release from E. crassipes, leading to a 32.52–77.49 % increase in dissolved organic carbon (DOC) levels. PS MPs further increased this, with results ranging from −21.28 % to 26.49 %. Based on the parallel factor analysis (PARAFAC), FMDDOM was classified into three types of fluorescent components: tryptophan-like, humic-like, and tyrosine-like compounds. Contaminants of MPs and PFASs modified the relative abundance of these three components. Protein secondary structure analysis showed that fluorocarbon bonds tended to accumulate on the α-helix of proteins in FMDDOM. The relative abundance of fluorescent and chromophorous FMDDOMs varied from 0.648 ± 0.044 to 0.964 ± 0.173, indicating that the photochemical structures of the FMDDOM were modified. FMDDOM exhibits decreased humification and increased aromaticity when contaminated with MPs and PFASs, which may be detrimental to the geochemical cycling of carbon. This study offers a theoretical basis for assessing the combined ecological risks of MPs and PFASs in floating macrophyte ecosystems.