Developing an efficient strategy to ensure the resistance of corrosion on Q235 carbon steel from liquid-based contaminants is a challenging work. Although superhydrophobic and superamphiphobic coatings have been fabricated, their susceptibility to oily liquids and poor mechanical robustness still limits their ability to tackle corrosion. Herein, the synthesis and fabrication of a new robust superamphiphobic nanocomposite was presented by combining the reinforcement properties of silicon oxide and the mechanical and thermal stability of zinc oxide into a polytetrafluoroethylene polymer matrix via a colloidal homogenization route. The newly developed composite exhibits a hierarchical bumpy structure, leading to excellent water and oil repellent properties. Importantly, the composite possesses a robust mechanical stability to sandpaper abrasion over a distance of 2000 cm under a 100 g load and a stronger adhesion to substrate. As a result, Q235 coated with this composite exhibits an excellent corrosion resistance in saline water for up to 120 days, and a good self-cleaning and antifouling abilities in most corrosive media. This finding reveals a new pathway for resisting the corrosion attacks on Q235 carbon steel and thereby rendering this strategy with practical application in industrial and marine settings.
Read full abstract