Abstract

The evolution of modern industry is impossible without the development of new materials and technologies. Nanostructured coatings, in particular electrolytic coatings, are among the most demanded in mechanical engineering. The purpose of this work was to study the different mechanisms of obtaining Fe-Ni, CoMn, Ni-Cr galvanic alloys and their relationship with the specified universal physical and mechanical properties. Fe-Ni alloy is characterized by high microhardness and corrosion resistance in sea water, low cold brittleness; Co-Mn – by a specified phase composition (α-Co >> α-Mn, amorphous and metastable phase Co(OH)2); Ni-Cr – by high coating microhardness, specified phase composition. The main methods of production: high-frequency alternating current for Fe-Ni and Co-Mn alloys; introduction of a special additive (carbamide or H-acid) for Ni-Cr alloy. The main mechanisms are: Fe-Ni due to phase transition α-Fe ε-Fe; Co-Mn by means of high-frequency alternating current and carbamide addition, providing a specified phase composition; Ni-Cr by means of stationary method of addition of H-acid (high-chromium alloy of 68 mass percent of Cr) and carbamide (low-chromium alloy of 25 mass percent of Cr). Recommended uses for electroplating: Fe-Ni – for protection of oil and gas production equipment in the Arctic; CoMn – in modulation systems and as a nanocatalyst in the Fischer-Tropsch synthesis reaction; Ni-Cr – for corrosion-resistant protective coatings in petrochemistry and for resistive elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call