In this paper, new approaches for evaluating the entire colour effect of optical mixing of bicolour woven structures are presented. Simple woven structures with constant colour in the warp direction and different colours in the weft direction were prepared and analysed. The constructional parameters of these woven fabrics were systematically changed, which resulted in the variations of the fractions of colour components and, consequently, also in the changes of colour properties (lightness, hue, chroma) of bicolour optical mixtures. The position of colours of the bicolour structures and the approximate direction (linear) of colour changes in CIELAB colour space were theoretically determined with a simple geometrical model and additive method. Furthermore, the bicolour optical effects were determined spectrophotometrically. The differences between the linear–theoretical and the spectrophotometrical colour values of bicolour woven fabrics were mathematically analysed with linear and non‐linear regression methods to determine the positions of colour coordinates L*, a* and b* of bicolour woven fabrics in the a*b* plane by increasing or reducing the cover factors of warp and weft threads (addition or reduction of colour components). The results present, on the one hand, the strong influence of original colours of warp and weft threads and, on the other hand, the minor influence of constructional parameters on the form of linear/non‐linear behaviour of colours of bicolour compositions. When the characteristics of a specific colour combination are taken into account, the spectrophotometrical colour values of bicolour woven fabrics can be also mathematically determined with additive–theoretical colour values and, to some extent, with predictable colour deviations.