Zoysia japonica is a warm-season turfgrass with a good tolerance and minimal maintenance requirements. However, its use in Northern China is limited due to massive chlorophyll loss in early fall, which is the main factor affecting its distribution and utilization. Although ethephon treatment at specific concentrations has reportedly improved stress tolerance and extended the green period in turfgrass, the potential mechanisms underlying this effect are not clear. In this study, we evaluated and analyzed chlorophyll changes in the physiology and transcriptome of Z. japonica plants in response to cold stress (4 °C) with and without ethephon pretreatment. Based on the transcriptome and chlorophyll content analysis, ethephon pretreatment increased the leaf chlorophyll content under cold stress by affecting two processes: the stimulation of chlorophyll synthesis by upregulating ZjMgCH2 and ZjMgCH3 expression; and the suppression of chlorophyll degradation by downregulating ZjPAO, ZjRCCR, and ZjSGR expression. Furthermore, ethephon pretreatment increased the ratio of chlorophyll a to chlorophyll b in the leaves under cold stress, most likely by suppressing the conversion of chlorophyll a to chlorophyll b due to decreased chlorophyll b synthesis via downregulation of ZjCAO. Additionally, the inhibition of chlorophyll b synthesis may result in energy redistribution between photosystem II and photosystem I.
Read full abstract