On July 21, 2012, a catastrophic precipitation event occurred in Beijing, highlighting the serious threat of extreme precipitation on socio-economic development and human health under climate change. Nevertheless, whether, how and to what extent aerosols and urbanization, as the two main influencing factors of urban extreme precipitation, have affected this highly damaging extreme event remains largely unexplored. Here, we employed the weather research and forecasting model coupled with chemistry (WRF-Chem) and a single-layer urban canopy model to investigate the influences of urbanization, aerosols and their interactions on this extreme precipitation event. We found that the joint intensification effects of urbanization and aerosols on extreme precipitation events greatly enhance its negative influence on megacities. The results indicate that aerosols are enhanced by increasing cloud droplet numbers, thereby intensifying the feedback between precipitation and latent heating. Consequently, the total precipitation increased by 22.6%, raising the precipitation in the Beijing area increase by at least 50 mm. By stimulating atmospheric instability and strengthening vertical air motion (over 0.25 m s−1), the urban heat island effect considerably influences the temporal and spatial distributions of extreme precipitation events, resulting in an increase in warm cloud precipitation (80%) and a decrease (30%) in frontal precipitation. Consequently, joint intensification effects resulted in more concentrated precipitation in the southwest of Beijing, leading to a substantial increase (more than 40%, ∼80 mm). This condition may be an important reason for the most severe disasters in the southwest of Beijing.
Read full abstract