Abstract
It is generally thought that an increase in aerosol particles suppresses precipitation in warm clouds. The nature and magnitude of this effect are highly uncertain owing to numerous microphysical and macrophysical processes that influence clouds over a wide range of spatial and temporal scales. This work addresses the need to improve the evidence for and quantification of aerosol effects on precipitation by using observational data. Previous work introduced the concept of precipitation susceptibility as a metric for changes in precipitation that result from aerosol perturbations. Motivated by the difficulty in obtaining statistically significant aerosol measurements in the vicinity of clouds, this study explores breaking up the precipitation susceptibility construct into separate components: an aerosol‐cloud interaction component and a cloud‐precipitation component. These are used to quantify precipitation susceptibility, while also accounting for meteorological factors that could obfuscate the response of clouds to aerosol perturbations. The utility of this technique is demonstrated using a diverse set of tools, including data from NASA's A‐Train constellation of satellites, aircraft measurements, and models of various complexities. Employing this method results in increased confidence in causal relationships between aerosol perturbations and precipitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.