Aninverted DNA tetrahedron-mediated modular DNA walker was developed for the determination of sulfadimethoxine. The inverted DNA tetrahedron scaffold raises several advantages of recognition module including appropriate lateral space, multiple recognition domains, and cost-effectiveness. The proposed inverted DNA tetrahedron-based recognition module exhibited better binding affinity and kinetics toward target antibiotic than that of other DNA tetrahedron counterparts. Upon specific binding with target, the released bipedal DNA walking strand hops to the signal amplification module and moves stochastically with assistant of nicking enzyme. By coupling these two modules, a good linear relationship between the fluorescence intensity of supernatant and the concentration of sulfadimethoxine was achieved in the range 0.1-100nM, and the limit of detection was 64.7pM. Furthermore, this modular DNA walker had also successfully applied tospiked honey and milk samples with satisfactory recoveries from 91.5 to 108.8%, demonstrating its practical sensing capability.
Read full abstract