Abstract
Herein, we developed a novel three-dimensional (3D) self-accelerated DNA walker (SADW) which progressively expedite walking rate by unlocking the more walking arm continuously in walker process to construct electrochemical biosensor for ultrasensitive detection of microRNA. Particularly, we skillfully introduced a target analogue sequence in the double-loop hairpin, which could be released in the walking process of SADW, then rapidly activating more silenced walking strands to achieve the continuous self-acceleration, resulting in the expedited reaction rate. Surprisingly, the average reaction rate of SADW was quite higher than that of traditional 3D self-circulating DNA walkers (DW) under pretty low target miRNA concentration, which is ascribed to the outstanding acceleration process of the SADW, readily conquering the major predicaments of DW in detecting target with traces concentration: slow reaction rate and low sensitivity. This way, the elaborated SADW is favorably applied in the ultrasensitive and rapid detection of miRNA-21 in tumor cancer cell lysates with a detection limit down to 5.81 aM which was far from lower than the detection limit of DW. This approach develops the novel generation of widespread strategy for the applications in clinic diagnose, biosensing assay, and DNA nanobiotechnology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.