Herein, an intense electrochemiluminescence (ECL) was achieved based on Pt hollow nanospheres/rubrene nanoleaves (Pt HNSs/Rub NLs) without the addition of any coreactant, which was employed for ultrasensitive detection of carcinoembryonic antigen (CEA) coupled with an M-shaped DNA walker (M-DNA walker) as signal switch. Specifically, in comparison with platinum nanoparticles (Pt NPs), Pt HNSs revealed excellent catalytic performance and pore confinement-enhanced ECL, which could significantly amplify ECL intensity of Rub NLs/dissolved O2 (DO) binary system. Then, the tracks and M-DNA walker were confined on the Pt HNSs simultaneously to promote the reaction efficiency, whose M-structure boosted the interaction sites between walking strands and tracks and reduced the rigidity of their recognition. Once the CEA approached the sensing interface, the M-DNA walker was activated based on highly specific aptamer recognition to recover ECL intensity with the assistance of exonuclease Ⅲ (Exo Ⅲ). As proof of concept, the “on-off-on” switch aptasensor was constructed for CEA detection with a low detection limit of 0.20 fg/mL. The principle of the constructed ECL aptasensor also enables a universal platform for sensitive detection of other tumor markers.
Read full abstract