The glutathione S-transferase (GST) gene family participates in the sequestration of anthocyanins into vacuoles. In this study, MdGST12 was identified as a candidate gene during light-induced anthocyanin accumulation. The methylation levels of the MdGST12 promoter exhibited marked differences among apple fruit treated with different light intensities. Interestingly, it was revealed that MdGST12 was localized in both the cytoplasm and nucleus. Moreover, MdHY5 and MdWRKY26 bind to the G-box and W-box cis-elements within the MdGST12 promoter, respectively. Instantaneous and stable transformation in plantlets, fruit, and calli, confirmed the role of MdGST12 and MdWRKY26 in promoting anthocyanin accumulation in apples. Moreover, the silencing of MdGST12 or MdWRKY26 by RNA interference significantly damaged the anthocyanin accumulation. Surprisingly, we found that MdGST12 could act as a transactivator and that the interaction between MdGST12 and MdDFR further enhances transcriptional activation of the MdDFR promoter. Moreover, MdGST12 also interacts with MdUFGT. Further study revealed that MdGST12 could interact with itself forming homodimers in the nucleus. Taken together, our study first revealed that MdGST12 regulated by MdWRKY26 and MdHY5 interacts with MdDFR and enters the nucleus, enhancing the transcriptional level of MdDFR and promoting anthocyanin accumulation in Malus under light conditions. It first revealed the complexity of GST's function in addition to the function of transferases and transporters in plants.
Read full abstract