Abstract

BmG10H-1 transcript from B. monnieri was functionally active. BmG10H-1 promoter drives GUS activity in response to MeJA and wounding. BmMYB35 regulates BmG10H-1 transcript by binding to its promoter. Geraniol 10-hydroxylase (G10H) is one of the important regulatory cytochrome P450 monooxygenase, which is involved in the biosynthesis of monoterpene alkaloids. However, G10H is not characterized at the enzymatic or at the regulatory aspect in B. monnieri. In the present study, we have identified two transcripts of BmG10H (BmG10H-1and BmG10H-2) and characterized the methyl jasmonate (MeJA) and wound responsive BmG10H-1 transcript from B. monnieri. BmG10H-1 showed induced expression after 3h of MeJA and wounding treatment in the shoot. Yeast purified recombinant BmG10H-1 protein is enzymatically active, having Vmax of 0.16µMsec-1μg-1 protein and catalyzes the hydroxylation of geraniol to 10-hydroxy geraniol. The BmG10H-1 promoter was isolated by using the genome walking method. BmG10H-1 promoter can drive GUS expression in transgenic Arabidopsis thaliana. GUS activity of MeJA and wound-treated Arabidopsis seedlings were found to be increased as compared to the control untreated seedlings, whereas no GUS activity was found in deleted MeJA responsive and W-box cis-elements. This shows that the BmG10H-1 promoter contains functional MeJA (TGACG) and wound responsive (TGACCT) cis-elements. Further, shoot specific and MeJA responsive recombinant BmMYB35 protein was purified, which binds with the MYB recognition cis-element (TGGTTA) present in the BmG10H-1 promoter and transcriptionally activates the reporter gene in yeast. In conclusion, the characterization of MeJA and wound responsive BmG10H-1 provides novel information about its transcriptional regulation by binding with MYB transcription factor in B. monnieri.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.