Currently, there are many kinds of voxel-based multisensor 3D object detectors, while point-based multisensor 3D object detectors have not been fully studied. In this paper, we propose a new 3D two-stage object detection method based on point cloud and image fusion to improve the detection accuracy. To address the problem of insufficient semantic information of point cloud, we perform multiscale deep fusion of LiDAR point and camera image in a point-wise manner to enhance point features. Due to the imbalance of LiDAR points, the object point cloud in the long-distance area is sparse. We design a point cloud completion module to predict the spatial shape of objects in the candidate boxes and extract the structural information to improve the feature representation ability to further refine the boxes. The framework is evaluated on widely used KITTI and SUN-RGBD dataset. Experimental results show that our method outperforms all state-of-the-art point-based 3D object detection methods and has comparable performance to voxel-based methods as well.