Energy-containing eddies (energy-eddies) are the elementary structures of wall turbulence that carry most of the kinetic energy and momentum. Despite the consensus that energy-eddies can self-sustain at each relevant length scale, their precise origin and spatial evolution are currently not well understood. In this study, we examine the spatial evolution of energy-eddies by quenching them at the inflow of a turbulent channel flow. Our study shows that the eddies involved in the energy cascade cannot be sustained without the energy-eddies. The streamwise velocity spectra of the evolving flow start to recover at a spanwise wavelength of $\lambda _z^+ \simeq 100$ , equal to the near-wall spacing of streaks in the buffer layer located at $y^+ \simeq 15$ , whereas there are no active vortical motions in the streamwise vorticity spectra until the energy at the streak location is re-established. Hence, the present study demonstrates that in a spatially evolving flow, the formation of near-wall streaks is the primary process necessary in the recovery of energy-eddies.
Read full abstract