A finite element fluid-solid coupling model for ocean energy harvester based on piezoelectric vortex-induced vibration(VIV) is established. Given that the Karman Vortex Street is generated after the fluid passes through the vibrator. The model includes the conversion of water flow energy to VIV energy and the capture of electrical energy by piezoelectric devices. And the output voltage curve is obtained by coupling with piezoelectric beam. Based on the fluid-solid coupling calculation, the dynamic response characteristics of the oscillator under different parameters such as shape of oscillators and fluid velocity are studied. The voltage output of piezoelectric beam in cylindrical, semi-cylindrical and regular triangular oscillators is analyzed. Simulation results show that the output voltage and pressure difference are largest in regular triangular oscillator system compared with the cylindrical and semi-cylindrical system. When changing fluid velocity, it is found that the higher the velocity of the water fluid be, the higher the output voltage be. When the given fluid velocity reaches 1 m/s, the maximum output voltage of cylindrical, semi-cylindrical and regular triangular piezoelectric energy harvesters reaches 0.045V, 0.08V, and 0.085V respectively. Under the same fluid velocity, change the ratio of height and width of oscillator, and find that the higher ratio of height and width of oscillator is more suitable to harvest the energy of VIV.