Abstract
In this paper, effects of bi-stable stiffness and hardening stiffness on the performance of a Vortex induced vibration (VIV) energy converter are theoretically and experimentally studied through a wake oscillator model and a computer-based force-feedback testing platform. Based on the simulation and experimental results, it is found that the bi-stable stiffness is potential to allow the system to operate at low velocity water flows, while the hardening stiffness will extend the operating range at high velocity flows. Subsequently, in order to take the advantages of both types of stiffness, a combined nonlinear stiffness is proposed and verified experimentally to demonstrate its capability in improving the overall operating range of the VIV energy converter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.