Freshwater shortages in coastal regions are intensifying due to rapid urbanisation, economic growth, and climate variability, particularly in deltaic areas where rivers meet the sea. This study evaluates the feasibility of implementing a Coastal Reservoir (CR) as an innovative solution to increase freshwater availability without relying on desalination. Using the Brisbane River Estuary (BRE), Australia, as a case study, the research examines critical factors such as freshwater inflow, seawater intrusion, and reservoir volume requirements. A three-dimensional hydrodynamic model (MIKE 3) was calibrated and validated using observed data from the 2008 and 2011 flow events. Simulation results indicate that a freshwater discharge of 150 m³/s during a spring-neap tidal cycle effectively pushes saline water out of the estuary. The CR can store 300 GL/year of freshwater with 92% reliability, meeting Southeast Queensland’s (SEQ) annual water demand of 440 GL during drought conditions combined with existing infrastructure. During its initial filling phase, the CR can flush 95% of saltwater within 240 days, using a steady inflow of 150 m3/s. The findings demonstrate the technical feasibility of CRs as a sustainable and practical water management strategy for mitigating freshwater shortages in BRE and other similar coastal regions.
Read full abstract