Many studies have been conducted to develop electronic skin (e-skin) and flexible wearable textiles which transform into actual “skin”, using different approaches. Moreover, many reports have investigated self-healing materials, multifunctional sensors, etc. This study presents a systematic approach to embroidery pressure sensors dependent on interdigitated capacitors (IDCs), for applications surrounding intelligent wearable devices, robots, and e-skins. The method proposed a broad range of highly sensitive pressure sensors based on porous Ecoflex, carbon nanotubes (CNTs), and interdigitated electrodes. Firstly, characterizations of ICDs embroidering on a cotton fabric using silver conductive thread are evaluated by a precision LCR meter throughout the frequency range from 1 kHz to 300 kHz. The effect of thread density on the performance of embroidered sensors is included. Secondly, the 16451B dielectric test fixture from Keysight is utilized to evaluate the composite samples’ dielectric constant accurately. The effect of frequency on sensor performance was evaluated to consider the influence of the dielectric constant as a function of the capacitance change. This study shows that the lower the frequency, the higher the sensitivity, but at the same time, it also leads to instability in the sensor’s operation. Thirdly, assessing the volume fraction of CNTs on composites’ properties is enclosed. The presence of volume portion CNTs upgrades the bond strength of composites and further develops sensor deformability. Finally, the presented sensor can accomplish excellent performance with an ultra-high sensitivity of 0.24 in low pressure (<25 kPa) as well as a wide detection range from 1 to 1000 kPa, which is appropriate for general tactile pressure rages. In order to achieve high sensor performance, factors such as density, frequency, fabric substrate, and the structure of the dielectric layer need to be carefully evaluated.
Read full abstract