The source and dynamics of calcium is the key factor that regulates dendritic integration. Apart from the voltage-gated and ligand-gated calcium influx, an important source of calcium is from inner store of endoplasmic reticulum with a regenerative process of calcium-induced calcium release (CICR). To trigger this process, inositol 1,4,5-trisphosphate (IP3) and calcium are needed to satisfy certain requirements. The aim of our paper is to investigate how the CICR depends on the dynamics of membrane potential. We utilize one dimensional dendritic model to calculate membrane potential by Nernst-Planck Equation (NPE) and cable model and Pure Diffusion (PD) model, computational simulations are carried out to inject the calcium influx by synaptic stimulation and to predict subsequent CICR and calcium wave propagation. Our results demonstrate that CICR initiation and calcium wave propagation have much difference between electro-diffusion process of NPE and cable model. We find that cable model has lower threshold of IP3 stimulation to trigger CICR but is more difficult for calcium propagation than NPE, PD model requires even higher threshold of IP3 to initiate CICR process and calcium duration is shorter than NPE; the regenerative calcium wave propagates with faster speed in NPE than that in cable model and in PD model. Our work addresses the important role of electro-diffusion dynamics of charged ions in regulating CICR process in dendritic structure; and provides theoretical predictions for neurological process which requires sustaining calcium for downstream signaling processes.