AbstractThis paper proposes a distributed cooperative control scheme for multiple energy storage unit (ESU) in DC microgrids to achieve the control objectives of SoC balancing, power sharing, and bus voltage recovery. In the primary control part, the proposed scheme constructs a control function between the SoC values of each ESU and the droop coefficients to dynamically adjust the droop coefficients. Through a communication network, information is exchanged with neighbouring ESUs to achieve SoC convergence. In the secondary control part, by exchanging power information with neighbouring ESUs, precise power distribution is achieved. Additionally, the proposed scheme maintains bus voltage stability. Finally, a DC microgrid simulation model and experimental platform were developed, demonstrating the feasibility and plug‐and‐play capability of the proposed control strategy through both simulation and experimental case tests.
Read full abstract