Artificial intelligence has reached deep into our lives, though you might be hard pressed to point to obvious examples of it. Among countless other behind-the-scenes chores, neural networks power our virtual assistants, make online shopping recommendations, recognize people in our snapshots, scrutinize our banking transactions for evidence of fraud, transcribe our voice messages, and weed out hateful social-media postings. What these applications have in common is that they involve learning and operating in a constrained, predictable environment. • But embedding AI more firmly into our endeavors and enterprises poses a great challenge. To get to the next level, researchers are trying to fuse AI and robotics to create an intelligence that can make decisions and control a physical body in the messy, unpredictable, and unforgiving real world. It's a potentially revolutionary objective that has caught the attention of some of the most powerful tech-research organizations on the planet. “I'd say that robotics as a field is probably 10 years behind where computer vision is,” says Raia Hadsell, head of robotics at DeepMind, Google's London-based AI partner. (Both companies are subsidiaries of Alphabet.) • Even for Google, the challenges are daunting. Some are hard but straightforward: For most robotic applications, it's difficult to gather the huge data sets that have driven progress in other areas of AI. But some problems are more profound, and relate to long-standing conundrums in AI. Problems like, how do you learn a new task without forgetting the old one? And how do you create an AI that can apply the skills it learns for a new task to the tasks it has mastered before?