The Information Retrieval user experience has remained largely unchanged since its inception for computers and mobile devices alike. However, recent developments in Virtual Reality hardware (pioneered by Oculus Rift in 2013) could introduce a new environment for Information Retrieval. This paper reports the results of a Scoping Literature Review (PRISMA-ScR) by rigorously examining the entire body of relevant literature with reproducible methods. The following research questions are answered: "What prototypes and concepts of Virtual Reality Information Retrieval systems with current generation hardware exist?", "How are user interaction and especially user input realised in these systems?", "What Retrieval features are used in these systems?", "How are search results displayed in these systems?" and "Can these VR IR systems compare to traditional (non-VR) IR systems?". After querying Google Scholar, Scopus and Web of Science, 1042 documents were reviewed in depth. Key features and attributes of the systems are summarised and discussed. Sketches of the user interfaces are included as well. The 30 documents that were relevant to the research questions include 16 distinct systems or theories. They discuss and utilise several user input technologies, ranging from controllers, voice input or hand tracking. Although conventional retrieval features are less common, systems enable retrieval of literature, 3D objects, images, books and texts and arrange them in a virtual space (e.g. as grids, arcs or maps). Finally, many of these systems were compared to conventional counterparts through user evaluation (n = 10). Most found user task times to be shorter or equal (n = 5, n = 3). In the seven papers that measured user performance (rate of correct solutions), three reported better performance (one equal). Notably, users always were more satisfied with the Virtual Reality systems compared to conventional ones. Possible limitations of these evaluations are demographic selection and the quality of baseline systems (control).
Read full abstract