The indispensable collaboration of cloud computing in every digital service has raised its resource usage exponentially. The ever-growing demand of cloud resources evades service availability leading to critical challenges such as cloud outages, SLA violation, and excessive power consumption. Previous approaches have addressed this problem by utilizing multiple cloud platforms or running multiple replicas of a Virtual Machine (VM) resulting into high operational cost. This paper has addressed this alarming problem from a different perspective by proposing a novel mathbb {O}nline virtual machine mathbb {F}ailure mathbb {P}rediction and mathbb {T}olerance mathbb {M}odel (OFP-TM) with high availability awareness embedded in physical machines as well as virtual machines. The failure-prone VMs are estimated in real-time based on their future resource usage by developing an ensemble approach-based resource predictor. These VMs are assigned to a failure tolerance unit comprising of a resource provision matrix and Selection Box (S-Box) mechanism which triggers the migration of failure-prone VMs and handle any outage beforehand while maintaining the desired level of availability for cloud users. The proposed model is evaluated and compared against existing related approaches by simulating cloud environment and executing several experiments using a real-world workload Google Cluster dataset. Consequently, it has been concluded that OFP-TM improves availability and scales down the number of live VM migrations up to 33.5% and 83.3%, respectively, over without OFP-TM.