Objective: Using a variety of datasets from the Ethereum documentation and Smart Contract Dataset repository, this study tackles the crucial problem of classifying smart contract vulnerabilities. Methods: Our study uses a three-module method and focuses on the Resource 3 Dataset, which contains over 2,000 Ethereum smart contracts, including inherited contracts. The groundwork for deep learning model training is laid in Module 1 by extracting bytecode from Solidity files and creating images thereafter. In Colab, Module 2 entails importing data, pre-processing, SMOTE balancing, and building three deep learning models: CNN, XCEPTION, and EfficientNet-B2. Module 3 is a Flask-based web application created in Visual Studio Code that enables vulnerability predictions, bytecode extraction, and user interaction. Findings: With an overall accuracy of 71 percent, the Convolutional Neural Network (CNN) displays its effectiveness in classifying vulnerabilities. Although the accuracy of XCEPTION and EfficientNet-B2 is 69% and 75%, respectively, the latter is the top performer. Novelty & Applications: The online application adds to the comprehensive examination of smart contract security by giving users an easy-to-use interface. The EfficientNet-B2 model stands out as a dependable tool for precise vulnerability classification, and this study advances our understanding of and efforts to mitigate vulnerabilities in Ethereum smart contracts. Keywords: Smart Contracts, Vulnerability Classification, Ethereum, Deep Learning, Convolutional Neural Network (CNN)