Low-spatial-resolution measurements from contact sensors and excessive measurement noise have impeded the implementation of vibration-based damage detection. To tackle these challenges, we propose a novel vision-based damage detection method combining multi-scale signal analysis theory and data fusion algorithm. For high-spatial-resolution vibration measurements, phase-based optical flow estimation algorithm is adopted to deploy virtual sensors on the structure, yielding reliable mode shapes. We then introduce the concept of entropy into damage detection. A novel damage index, defined in Gaussian multi-scale space and named multi-scale local information entropy (MS-LIE), is proposed. The MS-LIE integrates the multi-scale analysis component and the entropy analysis component, addressing both the issue of detection sensitivity and noise immunity, thereby showcasing enhanced performance. Moreover, a data fusion technique for multi-scale damage information is developed to further mitigate the noise-induced uncertainty and pinpoint damage locations. A series of numerical and experimental scenarios are designed to validate the method, and the results indicate that the proposed method accurately detects single and multiple damages in noisy environments, obviating the need for baseline data as a reference.
Read full abstract