Abstract
A residual capability intelligent detection method based on computer vision is proposed to address the issues of low efficiency, poor accuracy, and high danger in manual measurement of energy dissipators in flexible protection systems. The proposed method first establishes a binary semantic segmentation dataset for energy dissipators and trains a salient object detection deep neural network to segment the energy dissipator binary map; Then, it uses morphological image processing and contour detection to calculate the residual capability automatically. U2-Net, U2-Netp, and BASENet were trained and compared by a dataset with 500 ring-type energy dissipator images. The proposed method was validated through a quasi-static tensile test and a full-scale impact test. Compared with the most accurate integration calculation method, the error of the proposed method does not exceed 3 %, and the efficiency is improved by about 25 times compared to the most commonly used manual detection method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.