In situ high-temperature visible microspectroscopy has been developed in order to study color change kinetics of volcanic materials. Olivine thin sections put on a synthetic alumina plate are heated on a heating stage at 600-800 degrees C under a visible microspectroscope. Changes in visible absorption spectra are monitored every 60 s for 5 hours. The obtained high-temperature visible spectra showed a gradual increase with time in absorbance in the shorter wavelength region (400-600 nm). The 430 nm absorbance (ligand field transition of Fe3+ increased more with time at higher temperatures. Assuming diffusional transport in plane sheets, apparent diffusion coefficients were determined at temperatures of 600-800 degrees C. The activation energy for this diffusion in olivine is 208 +/- 17 kJ/mol. This activation energy value is similar to those for the metal vacancy diffusion in olivine. This newly developed in situ high-temperature visible microspectroscopy can provide kinetic measurements of visible spectral change of materials at high temperatures such as volcanic materials.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
151 Articles
Published in last 50 years
Related Topics
Articles published on Visible Spectral Changes
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
151 Search results
Sort by Recency