The motion of a three-dimensional viscous, imcompressible fluid is governed by the Navier-Stokes equations. We study the case where the fluid is in an ocean of infinite extent and finite depth with a free surface on top. This gives rise to a nonlinear free boundary problem. The given data are the initial velocity field and the initial free surface. In general, given smooth data, the solution will develop singularities in finite time; however, the effect of viscosity and surface tension tends to prevent the ingulitrities. It was previously known that when both are present, small, appropriately smooth solutions do not develop singularities; that is, smooth solutions exist globally in time. In this paper, we show that viscosity alone will prevent the formation of singularitics, even without surface tension; i.e., small smooth data which satisfy certain natural compatibility conditions, smooth solutions exist for all time. Uniqueness of the solution for any finite time interval is also proved.
Read full abstract