Abstract
The motion of a three-dimensional viscous, imcompressible fluid is governed by the Navier-Stokes equations. We study the case where the fluid is in an ocean of infinite extent and finite depth with a free surface on top. This gives rise to a nonlinear free boundary problem. The given data are the initial velocity field and the initial free surface. In general, given smooth data, the solution will develop singularities in finite time; however, the effect of viscosity and surface tension tends to prevent the ingulitrities. It was previously known that when both are present, small, appropriately smooth solutions do not develop singularities; that is, smooth solutions exist globally in time. In this paper, we show that viscosity alone will prevent the formation of singularitics, even without surface tension; i.e., small smooth data which satisfy certain natural compatibility conditions, smooth solutions exist for all time. Uniqueness of the solution for any finite time interval is also proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Communications in Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.