In this paper we consider the initial boundary value problem for a viscoelastic wave equation with strong damping and logarithmic nonlinearity of the form utt(x,t)−Δu(x,t)+∫0tg(t−s)Δu(x,s)ds−Δut(x,t)=|u(x,t)|p−2u(x,t)ln|u(x,t)|\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ u_{tt}(x,t) - \\Delta u (x,t) + \\int ^{t}_{0} g(t-s) \\Delta u(x,s)\\,ds - \\Delta u_{t} (x,t) = \\bigl\\vert u(x,t) \\bigr\\vert ^{p-2} u(x,t) \\ln \\bigl\\vert u(x,t) \\bigr\\vert $$\\end{document} in a bounded domain varOmega subset {mathbb{R}}^{n} , where g is a nonincreasing positive function. Firstly, we prove the existence and uniqueness of local weak solutions by using Faedo–Galerkin’s method and contraction mapping principle. Then we establish a finite time blow-up result for the solution with positive initial energy as well as nonpositive initial energy.