Abstract

In recent decades, the study of seismic attenuation has received more and more concerns because it can stimulate the development of wave propagation simulation and improve the accuracy of structure imaging and reservoir prediction. In this paper, we review the attenuation theory and the development of high temporal accuracy wave simulation. The conventional mathematical models to describe the characteristics of viscoelastic are based on constant-Q model or standard linear solids theory. However, these approaches possess some noticeable shortcomings. Therefore, we introduce a frequency-dependent complex velocity to derive the novel viscoelastic wave equations with decoupled amplitude dissipation and phase dispersion. To obtain high temporal accuracy viscoelastic wave simulation, we adopt the normalized pseudo-Laplacian to compensate for the temporal dispersion errors caused by the second-order finite-difference discretization in the time domain. During the implementation, we incorporate the normalized pseudo-Laplacian into the optimized staggered-grid finite-difference coefficients. Therefore, it can greatly reduce the times of low-rank decomposition and Fourier transform and largely improve the computational efficiency. Based on this strategy, we can implement the high temporal accuracy viscoelastic wavefield extrapolation by comprehensively exploiting the staggered-grid finite-difference scheme, pseudo-spectral method and low-rank decomposition algorithm. Meanwhile, a linear velocity model is employed to evaluate the accuracy of low-rank approximation. Furthermore, we use several numerical examples to carry out the comparison between our scheme and other conventional methods. The numerical results reveal that our proposed scheme can effectively compensate for temporal dispersion errors and help generate high temporal accuracy viscoelastic wave solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call