Track high-speed ground tests of products of aviation and rocket technology make it possible to experimentally confirm the aerodynamic and strength characteristics of new aircraft or their components. Experimental installation Rocket rail track 3500, located on the territory of the Federal State Enterprise Scientific Test Range of Aviation Systems named after L. K. Safronov (FKP GkNIPAS named after L.K. Safronov), is a complex hydro-gas-dynamic engineering structure. The main part of this installation is a rail track placed on a special concrete base, which is based on piles to eliminate the influence of viscoelastic ground vibrations. Between the rails, taking into account the profile of the track, a hydrodynamic multi-level tray is made, designed for hydraulic braking of the stored track sled. The movable rocket track sled rests on slip shoes covering the top rail head. On the track sleigh, solid propellant rocket engines and the object of study are placed. The article describes the approach to the calculation of determining the dynamic loads acting on the elastic structure of the track sled with the test object. The design is represented by a schematic spatial model of elastic beams in the form of rods, plates, pipes with equivalent mass and stiffness, interconnected by elastic links. A model of non-stationary aerodynamic forces is formulated taking into account viscosity for numerical calculations of the flow around the sled structure. Programs have been developed and modeling of the aerodynamic interaction in the case of a supersonic air flow around the structure of a rocket sled has been carried out. The results of vibrational accelerations of elements, components of the sled and the test object, depending on the speed of movement, were obtained by calculation. The forms and frequencies of natural free vibrations of the sled structure are determined, and the densities of the vibration acceleration spectra are calculated.