Norovirus is known as a major cause of several acute gastroenteritis (AGE) outbreaks each year. A study was conducted to develop a unique multi epitope subunit vaccine against human norovirus by adopting reverse vaccinology approach. The entire viral proteome of Norwalk virus was retrieved and allowed for further in silico study to predict highly antigenic epitopes through antigenicity, transmembrane topology screening, allergenicity assessment, toxicity analysis, population coverage analysis and molecular docking approach. Capsid protein VP1 and protein VP2 were identified as most antigenic viral proteins which generated a plethora of antigenic epitopes. Physicochemical properties and secondary structure of the designed vaccine were assessed to ensure its thermostability, hydrophilicity, theoretical PI and structural behavior. Molecular docking analysis of the refined vaccine with different MHCs and human immune TLR8 receptor demonstrated higher binding interaction as well. Complexed structure of the modeled vaccine and TLR8 showed minimal deformability at molecular level. The designed construct was reverse transcribed and adapted for E. coli strain K12 prior to insertion within pET28a(+) vector for its heterologous cloning and expression, and sequence of vaccine constructs showed no similarity with human proteins. However, the study could initiate in vitro and in vivo studies regarding effective vaccine development against human norovirus.
Read full abstract