AbstractAn intriguing strategy for copper‐catalyzed hydroxymethylation of alkynes with CO2 and hydrosilane was developed. Switched on/off a proton source, for example, tBuOH, direct hydroxymethylation and reductive hydroxymethylation could be triggered selectively, delivering a series of allylic alcohols and homobenzylic alcohols, respectively, with high levels of Z/E, regio‐ and enantioselectivity. Such a selective synthesis is attributed to the differences in response of vinylcopper intermediate to proton and CO2. The protonation of vinylcopper species is demonstrated to be prior to hydroxymethylation, thus allowing a diversion from direct alkyne hydroxymethylation to reductive hydroxymethylation in the presence of suitable proton.
Read full abstract