Abstract

An intriguing strategy for copper-catalyzed hydroxymethylation of alkynes with CO2 and hydrosilane was developed. Switched on/off a proton source, for example, t BuOH, direct hydroxymethylation and reductive hydroxymethylation could be triggered selectively, delivering a series of allylic alcohols and homobenzylic alcohols, respectively, with high levels of Z/E, regio- and enantioselectivity. Such a selective synthesis is attributed to the differences in response of vinylcopper intermediate to proton and CO2 . The protonation of vinylcopper species is demonstrated to be prior to hydroxymethylation, thus allowing a diversion from direct alkyne hydroxymethylation to reductive hydroxymethylation in the presence of suitable proton.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call