The present study was conducted to investigate the effect of fish meal replacement with Clostridium autoethanogenum protein (CAP) on growth performance, haemato-biochemistry, digestive capacity, antioxidant index, and histopathological examination of liver and intestine in largemouth bass (Micropterus salmoides). Seven experimental diets were formulated with CAP replacement of 0% (CAP0), 15% (CAP15), 27% (CAP27), 39% (CAP39), 51% (CAP51), 63% (CAP63) and 75% (CAP75) fish meal, respectively. Results showed that replacement of fish meal by CAP did not affect SR, FBW, WGR, SGR and CF. While the fish fed diets containing CAP displayed a higher PER and a lower FCR than the control group (P < 0.05). However, the CAP inclusion level did not statistically affect the whole-body composition (P > 0.05). Additionally, The ADC of dry matter and protein were improved by addition of CAP (P < 0.05), while corresponding ADC of lipid were not significantly changed among different groups (P > 0.05). The lipase and amylase activities were not dramatically altered in stomach (P > 0.05), but were significantly increased in intestine with dietary substitution level up to 39% (P < 0.05). Differently, the protease activity of fish fed CAP75 was higher than other groups in stomach and intestine (P < 0.05). In addition, the activities of T-AOC and SOD in serum, liver and intestine were elevated with dietary CAP level (P < 0.05), whereas MDA content displayed the opposite trend. Moreover, the increased TP, ALB, TC, TG and AST/ALT were observed in treatment groups. In addition, the villus length and width of hindgut were dramatically increased with increasing dietary substitution level up to 39%. Furthermore, no adverse effect on the hepatic histology was occurred when fed diet with substitution level below 63%. Overall, the optimal CAP replacement level was 49.80% with maximum weight gain rate of juvenile largemouth bass.
Read full abstract