In this study, Chladni patterns corresponding to resonant and non-resonant vibration modes are visualized on square plates made in steel and aluminum alloys in the low frequency domain of 10–210 Hz. Using a laser sensor, the plate displacement at its central excitation point is measured, and from the obtained frequency response, the resonant and anti-resonant vibration modes are identified. Using the quality-factor method, the damping ratio corresponding to the 1st resonant peak is evaluated. Over a wide range of excitation frequencies, transitions of Chladni figures between resonant patterns via non-resonant patterns could be observed. Such Chladni figures, of the simplest geometrical configuration, can be used to achieve a certain desired movement path of the particles on the vibrating plate by controlling the excitation frequency.