Photostrictive actuators can produce photodeformation strains under illumination of ultraviolet lights. They can realize non-contact micro-actuation and vibration control for elastic plate structures. Considering the switching actuation and nonlinear dynamic characteristics of photostrictive actuators, a variable structure fuzzy active control scheme is presented to control the light intensity applied to the actuators. Firstly, independent modal vibration control equations of photoelectric laminated plates are established based on modal analysis techniques. Then, the optimal light switching function is derived to increase the range of sliding modal area, and the light intensity self-adjusting fuzzy active controller is designed. Meanwhile, a continuous function is applied to replace a sign function to reduce the variable structure control (VSC) chattering. Finally, numerical simulation is carried out, and simulation results indicate that the proposed control strategy provides better performance and control effect to plate actuation and control than velocity feedback control, and suppresses vibration effectively.
Read full abstract