The germplasm of valuable for breeding wild allotetraploid potato species Solanum stoloniferum is rarely used because of pre- and postzygotic reproductive barriers with cultivated potatoes. One of the factors that complicate crosses between S. stoloniferum and S. tuberosum is unilateral incompatibility (UI). Here, we present the results of application of S. verrucosum and S v S v -lines for overcoming UI in crosses with S. stoloniferum and of generating male fertile hybrids derived from this species. S v S v -lines are F2 S. tuberosum dihaploid × S. verrucosum that are male fertile and have D/γ-type cytoplasm. Since they are homozygous for S v gene from S. verrucosum, they were expected to have the same ability for elimination of prezygotic incompatibility as this species. Three accessions of S. verrucosum and seven S v S v -lines were pollinated by 26 accessions of S. stoloniferum. The crosses with S. verrucosum failed or had low efficacy (1.5–2.4 seeds per pollination). On the other hand, use of S v S v -lines was more efficient: 15.8 seeds per pollination. In spite of low percentage of germination (1.9%), 40 seedlings of interspecific hybrids were produced. The experiment on hybridization between S v S v -lines and S. stoloniferum has been reproduced with the accession PI 205522 of the wild species, which had DNA markers of PVY and LB resistance genes and W/γ cytoplasm: 950 hybrid seeds and 12 viable seedlings were produced. The genome of the seedlings was doubled by colchicine treatment, which generated hexaploids that formed highly fertile pollen and set seeds from self-pollination. We were able to cross them as females with the variety Katahdin.