This study presents a low-cost smartphone-based imaging technique called smartphone video imaging (SVI) to capture short videos of samples that are illuminated by a colour-changing screen. Assisted by artificial intelligence, the study develops new capabilities to make SVI a versatile imaging technique such as the hyperspectral imaging (HSI). SVI enables classification of samples with heterogeneous contents, spatial representation of analyte contents and reconstruction of hyperspectral images from videos. When integrated with a residual neural network, SVI outperforms traditional computer vision methods for ginseng classification. Moreover, the technique effectively maps the spatial distribution of saffron purity in powder mixtures with predictive performance that is comparable to that of HSI. In addition, SVI combined with the U-Net deep learning module can produce high-quality images that closely resemble the target images acquired by HSI. These results suggest that SVI can serve as a consumer-oriented solution for food authentication.
Read full abstract