Abstract

The Segment Anything Model (SAM) is a foundation model for general image segmentation. Although it exhibits impressive performance predominantly on natural images, understanding its robustness against various image perturbations and domains is critical for real-world applications where such challenges frequently arise. In this study we conduct a comprehensive robustness investigation of SAM under diverse real-world conditions. Our experiments encompass a wide range of image perturbations. Our experimental results demonstrate that SAM’s performance generally declines under perturbed images, with varying degrees of vulnerability across different perturbations. By customizing prompting techniques and leveraging domain knowledge based on the unique characteristics of each dataset, the model’s resilience to these perturbations can be enhanced, addressing dataset-specific challenges. This work sheds light on the limitations and strengths of SAM in real-world applications, promoting the development of more robust and versatile image segmentation solutions. Our code is available at https://github.com/EternityYW/SAM-Robustness/.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.