ObjectiveIn this study we investigated the potential value of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) in characterizing changes in the cervical spinal cord and peripheral nerve roots in vivo in patients with spinal muscular atrophy (SMA).MethodsWe developed an MRI protocol with 4 sequences to investigate the cervical spinal cord and nerve roots on a 3 Tesla MRI system. We used 2 anatomical MRI sequences to investigate cross-sectional area (CSA) at each spinal segment and the diameter of ventral and dorsal nerve roots, and two diffusion tensor imaging (DTI) techniques to estimate the fractional anisotropy (FA), mean (MD), axial (AD) and radial diffusivity (RD) in 10 SMA patients and 20 healthy controls.ResultsThere were no significant differences in CSA (p > .1), although an 8.5% reduction of CSA in patients compared to healthy controls was apparent at segment C7. DTI data showed a higher AD in grey matter of patients compared to healthy controls (p = .033). Significantly lower MD, AD and RD values were found in rostral nerve roots (C3-C5) in patients (p < .045).ConclusionsWe showed feasibility of an advanced 3 T MRI protocol that allowed differences to be determined between patients and healthy controls, confirming the potential of this technique to assess pathological mechanisms in SMA. After further development and confirmation of findings in a larger sample, these techniques may be used to study disease course of SMA in vivo and evaluate response to survival motor neuron (SMN) augmenting therapy.
Read full abstract